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Abstract

A methodology has been developed to study laminar flow and heat transfer behaviour in periodic non-straight passages with a heat
transfer boundary condition of constant axial heat flux and constant peripheral temperature (H1). The technique uses Newton iteration
to determine the wall temperature distribution required to satisfy the H1 boundary condition. The methodology is validated for hydro-
dynamically developed and thermally developing flow, as well as for hydrodynamically and thermally developed flow in straight ducts
with various cross-sections. The methodology is extended to study fully developed flow in a periodic serpentine channel, consisting of a
number of bends and straight sections, with a semi-circular cross-section. The results show the existence of a non-monotonic temperature
distribution along the serpentine channels which exists because increased rates of heat transfer at bends lead to reductions in the local
wall temperature in order to maintain a constant axial heat flux. Hot spots within the passage cross-section, typical of the H2 boundary

condition, are removed in the H1 case.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The growing importance of micro-scale heat exchangers
for use in chemical plants of the future and electronic cool-
ing has led to the need to understand laminar flow heat
transfer in the periodic passages of heat exchangers. Whilst
the specification of hydrodynamic boundary conditions is
straightforward, the choice of thermal boundary condi-
tions is more complex. The physical situation is conduction
of heat from the hot channel into a substrate and subse-
quently to a cold channel. The relatively high thermal con-
ductivity of many substrate materials means that axial
conduction around the tube walls tends to remove local
“hot spots”.

Theoretical investigations mostly consider the boundary
conditions of uniform wall heat flux and uniform wall tem-
perature (the H2 and T boundary conditions, respectively
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[1]) due to the relative ease of their implementation in
numerical models — Refs. [2-7] are examples of such imple-
mentations for a variety of flow geometries. However, these
boundary conditions fail to include the important role of
the substrate material. The HI1 boundary condition,
defined as constant axial wall heat flux and constant
peripheral wall temperature, is often a more physically rep-
resentative boundary condition that goes some way to
including the role of the surrounding wall material without
moving to a full conjugate heat transfer solution that treats
multiple channels and the matrix material in detail [8].
Previous studies of the H1 boundary condition have
been limited mainly to straight ducts [1,9-14]. The compi-
lation of Shah and London [1] provides a database of fric-
tion factors and Nusselt numbers for various geometry
cross-sections, as well as a thorough explanation of thermal
boundary conditions. Table 1, adapted from Shah and
London [1], shows the significant differences in Nusselt
numbers for fully developed laminar flow in straight
ducts of selected cross-sections under the H1, H2, and T
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Nomenclature

cp heat capacity [J kg~ K™']

d passage diameter [m]

dy hydraulic mean diameter [m]

f Fanning friction factor [-]

h heat transfer coefficient [W m 2 K]

J Jacobian matrix [Wm ™' K]

k thermal conductivity [Wm ™' K]

L serpentine half wavelength [m]

m mass flow rate [kg s~ ]

N number of axial locations at which ith column of
the Jacobian is evaluated [-]

Nu Nusselt number = hdj,/k [-]

P cross-section perimeter [m]

Ow total heat transfer rate to the channel [W]
q" wall heat flux per unit area [W m 2]

q wall heat flux per unit length [W m™']

T temperature [K]

Tg bulk mean temperature [K]

ATg  temperature rise along one period of the channel
(K]

uy velocity in the direction of s [ms™!]

v velocity [ms™!]

w(p)  relative dilatation of the channel at location p []

Greek symbols

0 non-dimensional temperature [—]
u dynamic viscosity [Pa s]

0 fluid density [kg m ]

Subscripts

B bulk

H1 H1 thermal boundary condition

Pe Peclet number = Re - Pr [-] H2 H2 thermal boundary condition
Pr Prandt]l number = ¢,u/k [-] M mean
R, radius of curvature [m] P perimeter
Re Reynolds number = ugpdy /it [-] w wall
s axial location along the channel [m] X,y (x,y) location on a cross-section
S length of the channel [m]
Table 1 dition case was examined by Kalb and Seader [16] for

Friction factors and Nusselt numbers for fully developed flow in ducts of
various cross-sections for different boundary conditions

Cross-section fRe Nut Nug Nuga
Circular 16 3.657 4.364 4.364
Square 14.227 2.976 3.608 3.091
Semi-circular 15.767 3.323% 4.089 2.923

Values (except®) taken from [1].
# Taken from [23].

boundary conditions. For non-circular passages, Nug is
larger than Nugpp or Nuy [9]. Morini [10] summarised some
of the research conducted into the H1 boundary condition
as applied to straight ducts with a rectangular cross-sec-
tion, and considered rectangular cross-sectioned ducts with
different combinations of adiabatic and heat transferring
walls. Ghodoossi and Egrican [11] extended the application
of the H1 boundary condition in small scale rectangular
channels to include wall slip, a micro-scale phenomenon.
The H1 boundary condition has also been applied to
curved passages. It is well-known that laminar flows in
curved passages, such as those which occur in coiled pipes,
give rise to heat transfer enhancement relative to flow in
straight pipes due to their characteristic secondary flows.
Flow and heat transfer research into curved ducts is well
summarised by Shah and Joshi [15]. These authors suggest
that the influence of the wall thermal boundary condition
on the Nusselt number for helical channels with non-circu-
lar cross-sections is not significant for Pr > 0.7. Fully
developed flow and heat transfer for the H1 boundary con-

curved channels with circular cross-sections. Bolinder and
Sundén [17] summarised the literature on flow in curved
channels with square cross-sections, and investigated the
effect of finite pitch on flow and heat transfer behaviour
in helical channels.

A common feature of the above work is that it deals
with fully developed flow in straight or spiral ducts of con-
stant cross-section — these problems are essentially two-
dimensional in nature and relatively easy to solve. Once
the problem becomes three-dimensional, for example if
the flow is thermally and hydrodynamically developing,
or if the duct cross-section is not constant, then the solu-
tion of the problem can require very large investment into
purpose-built models and computer codes, and therefore
the use of commercial CFD packages becomes especially
attractive. Most of these packages allow simple Dirichlet
(T = Ty, a constant everywhere, corresponding to the
T boundary condition) and Neumann (g, = constant
everywhere, corresponding under many circumstances to
the H2 boundary condition) boundary conditions and
can therefore be used straightforwardly for T and H2
boundary conditions. However, the H1 boundary condi-
tion (heat transfer rate per unit of duct length is constant
but the local heat flux around the duct may vary since
the peripheral wall temperature at a given axial location
is constant) cannot be implemented directly.

The present work aims to fill a gap in the literature by
describing a generic methodology to implement the H1
boundary condition in a computational fluid dynamics
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(CFD) code. We demonstrate the technique by solving for
flow and heat transfer in a thermally developing flow with
an arbitrary inlet temperature and we extend this to cal-
culating fully developed flows in stream-wise periodic
passages, specifically in a regular serpentine channel with
semi-circular cross-section. Such a flow arrangement is typ-
ical of compact heat exchangers where flow and heat trans-
fer occurs in a large number of repeating unit structures or
modules. After a sufficient entrance length (number of
units), the flow and non-dimensional temperature patterns
become invariant from module to module, and can be
described as fully developed.

2. Problem specification

We consider the general case of a swept duct of constant
cross-section and length S. The duct is created by sweeping
its cross-section in a normal plane along a path whose
radius of curvature is sufficient to ensure that points on
the circumference are also swept smoothly without creating
unphysical overlaps. For a circular-section duct of dia-
meter d, for example, the minimum radius of curvature
of the swept path at the centre of the section is R. > d/2.

Consider a duct (length S) in which a total rate of heat
transfer Qw occurs. The H1 and H2 boundary conditions,
as defined by Shah and London [1], require that the so-
called axial heat flux is constant along the length:

q'(s) = Ow/S = qy (1)

The H1 boundary condition requires that the peripheral
wall temperature at a given location s is constant:

T|p = Tw(s,p) = constant (2)

and the axial heat flux (¢'(s)) is related to the average (¢”)
and peripherally local (¢”(s,p)) wall heat fluxes via

() =" P= / ¢'(s, P)w(p) dp (3)

where w(p) is the relative dilatation of the channel surface
at p due to the curvature of the duct path (it is positive
on the outside of the bend and negative on the inside).
From Fig. 1, which shows a small segment of channel of
length ds, it can be seen that

w(p) = dsw(p) _ [Re + rw(p)]do _ R.+rw(p)
ds R.d0 R,

4)

where R+ rw(p) is the distance of the point on the wall
from the sweep axis in the swept plane.

For the H2 boundary condition, it is a requirement that
the local heat flux be uniform around the periphery of the
duct:

= constant (5)

dr
" — _k_
q"(s,p) an,

A particularly simple specification of ¢” arises for a sym-
metrical cross-section with its line of symmetry aligned par-
allel to the axis of the sweep and located a distance R, from
that axis. In this case, rw(p) is an odd function for which

[ ripran=o (6)

i.e. the expansion of area on one side of the duct is bal-
anced by the reduction of area on the other. This results in

/P w(p)dp = P (7)

and the H2 boundary condition can be expressed explicitly
and is simply given as

" q/ Q "
6P == 2 g )

Fig. 1. Duct geometry created by sweeping a constant cross-section (a circular cross-section is pictured) along a given axial path, s.
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The H2 boundary condition is then sufficiently general and
trivial to implement in any commercial CFD code.

The situation is more complex for the H1 boundary con-
dition in non-straight passages, for which the wall temper-
ature at an axial location is constant but not known a
priori:

Tw(s,p) = Tw(s),

The local heat flux varies around the periphery of the duct
and the requirement of a constant axial heat flux is not sim-
ply expressed in terms of a universal boundary condition
that is easily available in a commercial CFD code (such
as universally constant Tw or ¢”). The problem, which
equates to finding Tyw(s) to satisfy the constant axial flux
condition, cannot be solved directly. Of course, if the wall
temperature distribution is known in advance, it is a stan-
dard computation to calculate ¢”(s, p) and thence ¢'(s) from
Eq. (3) — this suggests an approach to determining 7w(s)
iteratively from an initial guess to a final function that
satisfies constant axial heat flux. For this, we adopt a
Newton—Raphson approach, as described below.

an unknown function 9)

3. Solution methodology

Patankar et al. [18] described a technique for the
solution of stream-wise periodic flow and heat transfer
problems. Implementation of this technique is generally
specific to a given geometry (see, for example, [19]) and
the boundary conditions must be written specifically into
the solver which, for the H1 boundary condition, is not
generally accessible in commercial CFD codes.

For fluid flow with constant properties, the flow field is
independent of the temperature field and the continuity
and Navier-Stokes equations may be solved to obtain the
velocity field prior to the solution of the energy equation.
Computations are carried out using ANSYS CFX-10
[20], a finite-volume CFD code. All calculations are per-
formed using a second-order bounded differencing scheme
for the convective terms.

The problem of solving the energy equation to satisfy the
H1 boundary condition is split into two parts. Firstly, we
determine the appropriate wall temperature distribution
Tw(s) to achieve constant axial wall heat flux ¢(s) for a fixed
inlet temperature profile — this is the solution to a develop-
ing flow problem. We then modify the inlet fluid tempera-
ture distribution by scaling and wrapping of the duct exit
profile, the converged solution reflecting the solution for
fully developed flows with the H1 boundary condition.

The duct is created by sweeping a constant cross-section
along an axial path of arbitrary shape (Fig. 1). Through the
use of a swept mesh, nodes (at which calculated values are
to be obtained) fall into groups determined by their axial
location s. An example of a swept mesh, where the inlet
face is extruded along the axial path, s, is shown in Section
4.1. A hexahedral mesh has been used in this case to discre-
tise the model domain in order to maximise computational
efficiency and accuracy. The cross-sectional mesh provides

greatest resolution in areas containing the highest velocity
and temperature gradients, with the mesh being most
refined in the vicinity of the walls. The axial mesh is also
distributed to provide accurate resolution of the flow
throughout the domain.

3.1. Iterative calculation procedure for the HI boundary
condition

For a given inlet fluid temperature profile (assumed uni-
form, Ty, in this work), the iterative calculation is initiated
by applying an assumed axial distribution of wall tempera-
ture. A reasonable first guess is to assume a linear profile
with a gradient that is proportional to the axial wall heat
flux:

/!

Tw—Tw=

s (10)

mcy

The fluid temperature field is determined for the given wall
and inlet temperature distribution through the solution of
the energy equation using ANSYS CFX-10 [20]. The result-
ing distribution of wall heat flux per unit length can be cal-
culated using Eq. (3).

In vector notation, we have solved for @ = [q,
,qy] as a function of T= [T\,T>,Ts,...,Ty] for

9, G35 - -
each of the axial nodes. We now form the Jacobian matrix

[9q, Oq; 0q; |

oT, 0T, ~~~ OTy

Oq; g,

3] = or, o, (11)

oqly Oqyy

or, T aTy)

by perturbing the wall temperatures, one at a time, at suc-
cessive downstream locations by a small amount (A7),
repeating the CFD calculation to its new converged solu-
tion, and observing the resultant changes in the wall heat
flux. Perturbation of the ith temperature allows the ith col-
umn of the Jacobian to be populated as Aq'/ATw — for a
finely resolved flow-field, this may mean hundreds of
CFD iterations just to form the Jacobian and the process
is clearly computationally intensive. However, this process
lends itself to automation and is straightforward to imple-
ment. Fig. 2 shows the results for the perturbation of a
node about 10% of the way along a duct discretised as
372 axial nodes. Not surprisingly, the major perturbations
in the heat flux distribution occur around the node whose
temperature has been perturbed, producing a Jacobian that
is diagonally dominant.

For a typical case in which the overall fluid temperature
rise in the duct is 10 K (g—x), we find a wall temperature
perturbation of 0.5K provides the best compromise
between approximation of the derivatives as ratios of dif-
ferences and loss of accuracy in off-diagonal (weakly sensi-
tive) terms due to machine precision limitations.
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Wall Temperature

- —— Flux Change | >~
& —— Temperature | -~

Flux Change

Group

Fig. 2. A schematic of the applied temperature perturbation and resultant
change in wall flux (¢'). This figure shows a temperature perturbation of
ATy = 0.5 K, with the largest flux change approaching A¢'/¢' = 0.1.

Every element of the solution vector q' = [¢},45, 45, - - -,
¢y] should ideally equal ¢}, but each element is in error
by some amount ¢y, — ¢/, which is represented by the error
vector 8q’. Temperature profiles need to be adjusted so that
the new solution changes by this amount (8q’). As the
numerical Jacobian is not exact and the overall problem
is not linear for large perturbations, we adjust the previous
temperature profile by the amount

8T = fJ7' - &8¢ (12)

where f is an under-relaxation factor. Under-relaxation is
especially important when a large shift in wall temperature
is calculated. We typically start with f=0.1 — the use of a

small under-relaxation factor for increased stability does
increase the number of iterations required to achieve the
desired flux distribution, but the value of the under-relaxa-
tion factor can be adjusted (increased) as the run
converges.

Jacobian inversion is performed using the LU Decom-
position method and back-substitution, utilising the sub-
routines ludemp and lubksb from Press et al. [21]. We
note that the fact that the Jacobian is banded may provide
some opportunities for faster methods of inversion but we
have not investigated this further here as matrix inversion
is a very small cost component of the simulation.

The entire process to implement the H1 boundary con-
dition for a given inlet temperature profile is shown in
the flow diagram of Fig. 3.

3.2. Fully developed flows

Once the H1 boundary condition has been satisfied for a
given inlet temperature profile, we further impose a peri-
odic boundary condition whereby the appropriately scaled
outlet temperature is wrapped back to the inlet. The solu-
tion of this problem also requires further iterations on
the wall temperature profile in order also to satisfy the
H1 boundary condition — we have found that this two-step
approach to fully developed H1 solution is much faster and
more robust than attempting to solve in a single step
because the wrapping introduces gross perturbations when
far from the solution.

Fully developed flow is achieved when the non-dimen-
sional temperature profiles are identical at both the inlet
and the outlet of the wrapped section:

Solve flow field

Apply an
approximate 7T},

distribution

Solve energy
equation for given -

T,, distribution

Perturb 7T}, at

successive axial
locations

o
Is q - q desired
for all locations?

l

Calculate g' for all

axial locations

*————

Form Jacobian and
invert

ﬁ

Determine required
change to T},
distribution (Eq. 12)

Update T,

distribution

ﬁ

Fig. 3. Flow diagram for the implementation of the H1 boundary condition for a given inlet temperature profile. The dashed path represents a shortcut in
which the Jacobian is evaluated only once and is reused many times (see Sections 3.2 and 4.3).



1838 N.R. Rosaguti et al. | International Journal of Heat and Mass Transfer 50 (2007) 1833-1842

ein = <TW G’y) = <TW 72,)/) = 00111 (13)

Tw—Tg/in Tw—Tg/ ou
For the H1 boundary condition, the temperature profiles
are identical in shape at the inlet and outlet of the geome-
try, but are displaced by an amount that is equal to the
fluid temperature rise in the unit (= Oy /rmc,). This is the
same condition as applies for the H2 condition and we
use the same procedure as described in our earlier work
[22,23].

The convergence of the wrapped solution brings a new
inlet temperature distribution, different from that assumed,
and the wall temperatures must again be adjusted as
described in the previous section to re-establish the H1
boundary condition. In general, this calculation is much
quicker than obtaining the first H1 solution with arbitrary
inlet fluid temperature profile, and becomes faster with
each wrapping. The process is repeated until the fully
developed flow in the periodic geometry is achieved and
the H1 boundary condition is satisfied.

The procedure for simulating fully developed laminar
flow and heat transfer behaviour in periodic non-straight
passages subject to the H1 boundary condition is computa-
tionally expensive, given the large number of axial loca-
tions where the wall temperature is specified. The most
computationally intensive component of the simulation is
the formation the Jacobian matrix, as a converged temper-
ature solution must be obtained for wall temperature per-
turbation of each of the N axial locations. One method
of reducing computational cost is to reuse the Jacobian
for several temperature updates (with this procedure shown
via the dotted line in the flow diagram of Fig. 3). This has
the advantage of reducing the total number of computa-
tional steps required; however, the Jacobian may become
outdated and no longer approximate the change in wall
heat flux accurately for the given change in wall tempera-
ture (ATw), thus decreasing stability and accuracy. This
is problem specific, and the effect of using this approach
is discussed for the serpentine channel with semi-circular
cross-section in Section 4.3.

3.3. Validation

We have validated the method against results published
in Shah [24] for the local Nusselt number found in hydro-
dynamically developed and thermally developing flow in
straight ducts of both circular and semi-circular cross-sec-
tions. As shown in Fig. 4, our computations for the circu-
lar-section agree within 0.3% of the data taken from Shah
[24] for x> 0.002. For x" < 0.002, a loss of precision (1.9%
at x" = 0.001) relates to both the increasing dominance of
axial conduction and the length scale of the axial discreti-
sation employed in the near-entrance region of the duct,
and not to any intrinsic problem with the method. Since,
in general, Nu varies as 713 as x* - 0, there is theoreti-
cally no limit to the grid refinement needed to get an accu-
rate result as x  decreases — it is simply a question of

20
—e— Shah
—=— Current work
15 -
L
3 10 -
5 S
0 '
0.001 0.01 0.1

*x

X

Fig. 4. Local Nu as a function of x" ( dlfpg) for thermally developing and

hydrodynamically developed flow in a duct with circular cross-section.

refining the axial grid to the point that the minimum value
of x" to be considered is axially resolved.

Results for ducts with a semi-circular cross-section
(Fig. 5) show good agreement with data found in Lei and
Trupp [12]. Errors larger than 3% are found for
x" < 0.003, however, this loss of precision is again attrib-
uted to the length scale of the axial discretisation employed
in the region closest to the entrance of the duct.

100
—e— Leiand Trupp
—=— Current work
= 10 -
1 T -
0.0001 0.001 0.01 0.1
x*

Fig. 5. Local Nu as a function of x" ( dlfpe) for thermally developing and
hydrodynamically developed flow in a duct with semi-circular cross-

section.

Table 2
Nusselt numbers for fully developed flow in straight ducts of various
cross-sections

Cross-section  Nuyyy (Current results)  Nuyy [1]  Difference (%)
Circular 4.366 4.364 0.046
Square 3.615 3.608 0.202
Semi-circular  4.090 4.089 0.024

Values are compared with those found in Shah and London [1] for
validation.
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Validation of our calculations is also provided by com-
parison of Nusselt numbers for fully developed flow and
heat transfer (x" — oo) with analytical solutions [1] for
ducts with circular, semi-circular and square cross-sections.
As shown in Table 2, the maximum deviation is 0.2%.

4. Fully developed heat transfer in serpentine channels — H1
boundary condition

We have previously reported a study of the fully devel-
oped thermohydraulic performance of serpentine channels
subject to the H2 and T boundary conditions [23]. We now
extend this work to the H1 boundary condition using the
method described above.

Bend 1 Bend 4

Fig. 6. Schematic of a repeating module of the serpentine geometry
showing its axial shape. The non-dimensional geometrical parameters of
interest are L/d and R./d.

Serpentine channels are defined by sweeping a semi-cir-
cle along a serpentine path with the flat face of the semi-cir-
cle being in the swept plane, and are fully characterised by
the serpentine wavelength (2L), channel diameter (d) and
the radius of curvature (R;) of the bend (Fig. 6). Dimen-
sional similitude is achieved via the ratios L/d and R./d.
The hydraulic diameter, on which both the Reynolds and
Nusselt numbers are based, is given by
oom
)

Here we consider fully developed flow, for L/d=4.5,
R./d=1 and Pr=6.13.

dy (14)

4.1. Model discretisation

Grid independence tests have been carried out in the
previous study Rosaguti et al. [23]. The mesh used contains
approximately 2100 elements on the inlet cross-section,
Fig. 7a, with the repeating unit having more than 245,000
volume elements (Fig. 7b). This equates to 124 axial groups
at which the wall temperature must be adjusted in order to
satisfy the H1 boundary condition.

4.2. Results

The results for the fluid flow field are identical to those
reported previously [23]. The serpentine passage gives rise
to strong secondary flow effects in the form of Dean vorti-
ces in the vicinity of the bends in the system. These in turn
give rise to substantial variations in the peripherally aver-
aged heat transfer coefficient along the length of the duct.

Fig. 7. Mesh density (a) on a cross-section and (b) along the axial direction.
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Typical non-dimensional temperature profiles are shown
in Fig. 8 for the H1, H2 and T boundary conditions at the
inlet of the geometry. In all cases, hot fluid is transported
by secondary flows away from the hot walls into the centre
of the cross-section. However, there are significant differ-
ences in the fluid temperature distributions obtained for
the different boundary conditions: for H1, there is reduced
heat transfer in the corners of the cross-section, a result
both of the thermal boundary condition and of the low
velocities there. For H2, the fixed energy flux at every point
on the perimeter causes local hot-spots in the corners of the
cross-section and in regions of slow moving fluid. The
absence of hot spots for the H1 and T boundary conditions
leads to similar non-dimensional temperature contours.

An interesting feature of the solution with the HI1
boundary condition in these channels is the fact that the
wall temperature does not increase monotonically with

Fig. 8. Non-dimensional temperature contours at the inlet for (a) H1, (b)
H2 and (¢) T boundary conditions for L/d = 4.5, R/d = 1 and a Reynolds
numbers of 400. The colours red and blue indicate regions of hot and cold
fluid, respectively. (For interpretation of the references in colour in this
figure legend, the reader is referred to the web version of this article.)

axial distance. The wall temperature profile along the
length of the channel is shown in Fig. 9 for a range of Rey-
nolds numbers. The reduction in wall temperature corre-
sponds to the increase in the rate of heat transfer at
bends, and occurs because a constant axial heat flux per
unit length is maintained. After the bends, there is an
increase in wall temperature as flow redevelopment occurs
in the straight sections of pipe and the rate of heat transfer
decreases.

Finally, Fig. 10 shows a comparison of the average Nus-
selt number in the serpentine duct relative to its value
under the same boundary conditions in a straight semi-cir-
cular duct — see Table 1 for the three boundary conditions
H1, H2 and T. As previously reported for the H2 and T
boundary conditions [22,23] there is a strong effect of flow
Reynolds numbers on the extent of heat transfer enhance-
ment. However, the enhancement of the Nusselt number
depends only weakly on the thermal boundary condition,
with the H1 boundary condition giving slightly less

2.0
—e— Re =100
—=— Re =200
1.51| —+— Re=300
—v— Re =400
£ 1.0
g
3 051
S
0.0 4
0.5

0.0 0.2 0.4 0.6 0.8 1.0
Relative Axial Distance

Fig. 9. Normalised wall temperature distributions as a function of
position within a serpentine unit for L/d =4.5, R,/d=1 and Reynolds
numbers of: 100, 200, 300 and 400 for the H1 boundary condition. Dashed
lines indicate the relative position of the bends.

40 T T T T T T
T 35 —e— H1 Pr. 1
IS P
8 e 0eee H2 -
S 30¢t ——T i 1
£ A
"g 25+ o.-',g' 1
o 4
§ 527
= 20¢f .’9: 1
3 /
1] 9,
] 151 / k
P4

1.0 " R

0 50 100 150 200 250 300 350
Reynolds Number

Fig. 10. Comparison of section-average heat transfer enhancement
relative to flow in straight semi-circular ducts for fully developed flows
with the H1, H2 and T boundary conditions.
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enhancement than the H2 and T conditions for which the
section-average results are essentially indistinguishable.

4.3. Computational costs

As mentioned in Section 3.1, the procedure for simulat-
ing fully developed laminar flow and heat transfer behav-
iour in non-straight passages subject to the H1 boundary
condition is computationally expensive. The major portion
of this cost is incurred in repeated evaluations of the Jaco-
bian — this is shown in Fig. 10 which shows the progress of
convergence to the H1 solution (for developing flow in the
serpentine passage) in terms of the total number of CFD
iterations, with the spacing between the black circular sym-
bols representing the number of iterations needed to form
each new Jacobian. We have investigated the reuse of the
Jacobian matrix as a method to reduce the overall compu-
tational cost, as depicted schematically by the dashed line
in Fig. 3. Whereas continual updating of the Jacobian
requires approximately 4000 CFD iterations to achieve a
limiting residual of |3¢/|/¢’ ~ 107>, the reuse of the first
Jacobian achieves the same level of convergence in less
than 1000 CFD iterations, as shown in Fig. 11.

To obtain results for a single case of fully developed flow
within periodic serpentine channels with semi-circular
cross-section using the means of computational cost saving
mentioned above, simulations for the H1 boundary condi-
tion take more than 25 times longer than those for the H2
or T boundary conditions, solving only the energy equa-
tion. For reference, simulations for the H1 boundary con-
dition take approximately a day to complete on a PC with
3 GHz CPU and 2GB RAM. Typical relaxation factors
used in these computations ranged from 0.1 at the very
start of a run (required when a large temperature change
is necessary) to 1 as the run converges. Due to reuse of
the Jacobian, use of a small relaxation factor does not
greatly increase computational cost.

1000

—e— No Jacobian reuse
Jacobian reused

100 »— *

10 4

0.1

0.01 4

Maximum Error (%)

0.001 -

0.0001

0 1000 2000 3000 4000 5000
Total CFD lterations

Fig. 11. Test results for Jacobian reuse, showing the maximum error
(Max (|7 f1| ) ) in the wall heat flux for 5000 CFD iterations. The data

set with circular symbols use a new Jacobian for each wall temperature
update.

desired

5. Conclusions

The case of constant axial wall heat flux with constant
peripheral wall temperature (the H1 thermal boundary
condition) provides a more physically representative ther-
mal boundary condition for simulating heat exchangers
with finite peripheral wall conduction, accounting in a
first-order manner for the role of the substrate material
surrounding the duct. Simulations using the H1 boundary
condition to understand the effects of channel shape and
pathway are therefore of great utility in the design of heat
transfer equipment. This boundary condition is not avail-
able in commercial CFD software and is not straightfor-
ward to implement. For this reason, a methodology has
been developed to implement the H1 thermal boundary
condition in a CFD code that allows heat transfer simula-
tions in non-straight passages for steady, laminar, incom-
pressible, single-phase flow of a Newtonian fluid with
constant physical properties.

Validation cases for developing and fully developed flow
in straight ducts have shown the implemented method to be
very accurate. Fully developed laminar flow and heat trans-
fer behaviour in periodic serpentine channels with a semi-
circular cross-section subject to the H1 boundary condition
has been investigated as an example of a typical channel
geometry. Results have been presented for the geometric
configuration where R./d=1, L/d=4.5, for Reynolds
numbers up to 400 and fluids with a Prandtl number of
6.13. A non-monotonic temperature distribution along
the duct is seen to exist in order to maintain a constant
axial heat flux per unit length due to increased rates of heat
transfer through bends. This temperature gradient is shown
to be strongly dependent on the Reynolds number and
position with respect to bends in the duct.

The effect of the thermal boundary condition on the
non-dimensional temperature distribution has been com-
pared for the H2, T and H1 boundary conditions, utilising
previous work by the current authors. Results indicate that
hot spots within the passage cross-section, typical of the H2
boundary condition, are removed in the H1 case.

The methodology described to study the H1 boundary
condition in non-straight passages incurs a large computa-
tional cost, significantly greater than that required to study
the H2 or T boundary conditions. This is because of the
need to construct a Jacobian matrix that relates changes
of wall temperatures to wall heat fluxes. Computational
costs, however, can be minimised through reuse of the
Jacobian matrix used to update the wall temperatures.
Tests indicate that for fully developed flow in a periodic
serpentine passage with a given inlet temperature, the cre-
ation of a single Jacobian is sufficient to achieve a constant
axial wall heat flux distribution.
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